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Figure 1: We introduce a public dataset of indoor scenes for intrinsic images in the wild (a). (b) Our crowdsourcing pipeline lets users
annotate pairs of points in each image with relative reflectance judgements. (c) Our intrinsic image decomposition algorithm performs well in
respecting the human judgements and is based on a fully-connected conditional random field (CRF) that incorporates long-range interactions
in the reflectance layer while simultaneously maintaining local detail. All source images are licensed under Creative Commons (©).

Abstract

Intrinsic image decomposition separates an image into a reflectance
layer and a shading layer. Automatic intrinsic image decomposition
remains a significant challenge, particularly for real-world scenes.
Advances on this longstanding problem have been spurred by public
datasets of ground truth data, such as the MIT Intrinsic Images
dataset. However, the difficulty of acquiring ground truth data has
meant that such datasets cover a small range of materials and objects.
In contrast, real-world scenes contain a rich range of shapes and
materials, lit by complex illumination.

In this paper we introduce Intrinsic Images in the Wild, a large-
scale, public dataset for evaluating intrinsic image decompositions
of indoor scenes. We create this benchmark through millions of
crowdsourced annotations of relative comparisons of material prop-
erties at pairs of points in each scene. Crowdsourcing enables a
scalable approach to acquiring a large database, and uses the abil-
ity of humans to judge material comparisons, despite variations in
illumination. Given our database, we develop a dense CRF-based
intrinsic image algorithm for images in the wild that outperforms a
range of state-of-the-art intrinsic image algorithms. Intrinsic image
decomposition remains a challenging problem; we release our code
and database publicly to support future research on this problem,
available online at http://intrinsic.cs.cornell.edu/.
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1 Introduction

Intrinsic image decomposition is a long-standing inverse problem
with many applications in graphics and vision [Land and McCann
1971]. The goal of intrinsic images is to separate an image into two
layers, a reflectance (albedo) image and a shading (irradiance) im-
age, which multiply to form the original image. Reliable algorithms
for separating illumination from reflectance in scenes would enable
a range of applications, such as image-based resurfacing, texture
transfer between images, relighting, material recognition, and other
interior design tasks. There has been significant recent progress on
the problem of intrinsic image decomposition, aided by the release
of the MIT Intrinsic Images dataset [Grosse et al. 2009], which
contains carefully constructed ground truth for images of objects.
However, intrinsic image decomposition is still very challenging,
especially on images of real-world scenes. There is currently no
standard dataset for evaluating intrinsic images on images of such
scenes, due in part to the challenge of capturing real-world photos
with known ground truth reflectance and illumination. To span the
rich range of real-world scenes we need a large set of images. For
this scenario, both careful measurement (as in [Grosse et al. 2009])
and using rendered images of synthetic scenes are not practical or
satisfactory. Instead, to cover a rich variety of real-world conditions,
we select thousands of images from public photo collections [Bell
et al. 2013] and leverage human perception by turning to crowd-
sourcing to collect material annotations for each image.

‘We present a new, large-scale database of Intrinsic Images in the
Wild—real-world photos of indoor scenes, with crowdsourced anno-
tations of reflectance comparisons between points in a scene. Rather
than creating per-pixel (absolute) annotations, we designed a scal-
able approach to human annotation involving humans reasoning
about the relative reflectance of pairs of pixels in each image. This
dataset is the first of its kind for intrinsic images, both in its scale
and in its use of human annotation: the dataset contains over 5,000
images featuring a wide variety of scenes, and has been annotated
with millions of individual reflectance comparisons (on average 100
judgements per image). This makes our dataset several orders of
magnitude larger than existing intrinsic image datasets. In addition,
we include a dataset of about 400 images with a dense set of anno-
tations (on average 900 per image). Figure 1 illustrates our dataset,
including the pairwise comparisons we collect (Figure 1(b)).

Motivated by our new dataset, we have also created a new intrinsic
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image decomposition algorithm designed for images of real-world
scenes. Our algorithm makes use of the fact that many surfaces in in-
door scenes share the same material and reflectance, resulting in long-
range sharing of reflectances across a scene (for example, a painted
wall spanning an entire image). We build on recent work in fully
connected conditional random field (CRF) inference [Krahenbiihl
and Koltun 2013] to enable such long-range connections in our algo-
rithm. We evaluate our method on our new benchmark, and show
that it outperforms several state-of-the-art algorithms.

In summary, our contributions are:

o A new, large-scale dataset for intrinsic images annotated via
crowdsourcing that includes more than 5,000 images. This
dataset is completely open and public, including both images
and annotations, with the aim of enabling others to design and
evaluate new algorithms for scene-level intrinsic images.

e A new intrinsic images algorithm based on a dense CRF formu-
lation that considers long-range material relations to achieve
better decomposition on our new database.

We evaluate our new algorithm, as well as a suite of other public
intrinsic image algorithms, on our dataset. For each algorithm, we
perform extensive cross-validation to find the optimal parameters on
our dataset, and find that our new algorithm outperforms these recent
algorithms. Nonetheless, intrinsic image decomposition for real-
world scenes of this complexity remains a challenging problem, with
much room for improvement. We release our database of images
and annotations to help drive future research in this problem.

2 Related work

Intrinsic images. Intrinsic image decomposition has a rich history
in computer graphics and vision, and has been studied since the
1970s. One of the earliest observations is that large discontinuities
in image intensity correspond to changes in reflectance, and all
other variations are due mostly to changes in shading [Land and
McCann 1971]. This led to the Retinex algorithm in which each
image gradient is classified as belonging to either the reflectance
layer or the shading layer according to its magnitude. The resulting
decomposition is obtained by solving for the pair of layers whose
gradients best match these classified gradients. Nearly forty years
later, a version of this algorithm was the best performing on the MIT
Intrinsic Images dataset [Grosse et al. 2009]. Subsequent algorithms
perform much better on this dataset, as described below.

Many others ideas have been proposed to solve the problem. Some
recent techniques use classifiers trained on local grayscale patterns
[Tappen et al. 2005; Tappen et al. 2006], priors on texture statistics
[Oh et al. 2001; Liu et al. 2012], complex priors on shape, albedo,
and illumination [Barron and Malik 2012b; Barron and Malik 2012a;
Barron and Malik 2013b], meso- and macro-scales of shading [Liao
et al. 2013], chromaticity segmentation [Garces et al. 2012], sparse
sets of basis reflectances [Omer and Werman 2004; Gehler et al.
2011], non-local texture constraints [Shen et al. 2008; Zhao et al.
2012], and red-black wavelets [Shen and Yeo 2011].

Further, many methods have been proposed that require additional
input to solve the problem. With user interaction, Bousseau [2009]
showed that a very high-quality decomposition can be obtained, and
Carroll [2011] showed that diffuse interreflections can be separated.
Others have addressed the problem using additional photos of the
same scene either registered as an image stack [Weiss 2001; Hauagge
et al. 2013], or taken from different angles (enabling additional 3D
reasoning) [Haber et al. 2009; Laffont et al. 2012; Laffont et al.
2013]. Finally, recent methods have been proposed for RGB-D
(Kinect-style) imagery [Barron and Malik 2013a; Chen and Koltun

2013]. In contrast, our paper is focused on completely automated
methods that work on a single image.

Crowdsourcing. Recently many authors have shown how to effec-
tively gather high-quality data from workers online in an economical
and scalable way. Many types of problems have been addressed
this way, including: acquiring material and object labels [Bell et al.
2013], solving micro-problems with humans in the loop [Gingold
et al. 2012], labeling parts and attributes of birds [Branson et al.
2010], evaluating image retargeting [Rubinstein et al. 2010], and
using gauge figures for understanding shape perception [Cole et al.
2009]. Additionally, many studies of worker dynamics have guided
the design of tasks in this space, such as modeling workers with a
confusion matrix [Dawid and Skene 1979] or with multidimensional
classifiers that incorporate notions of user competence, bias, and
expertise (CUBAM model) [Welinder et al. 2010].

Intrinsic images databases. Our goal is to scale to the wide
diversity of scenes in the real world in various lighting situations,
and to acquire “ground truth” data for such scenes. One could
create such a dataset in a few different ways. The MIT Intrinsic
Images dataset [Grosse et al. 2009] captured images of single objects
and rigorously acquired irradiance by spray painting the objects
for diffuse measurements. However, this approach does not scale
to large numbers of scenes in the wild. Another approach is to
render synthetic scenes along with their reflectance and illumination
(as has been done in prior work on a few test scenes, or on CG
movie sequences [Chen and Koltun 2013]); but these approaches
are constrained by the availability of models that span the range of
real world materials, lightings and scenes. Instead, we chose to use
human judgements as our ground truth data.

3 Database

We designed a crowdsourcing pipeline where human subjects (on
Amazon Mechanical Turk (AMT)) report which of two points in
an image has a darker surface reflectance. Our pipeline (shown in
Figure 2) scales to millions of human judgements across thousands
of real-world images. We aimed to produce a dataset that was broad
enough to draw conclusions about intrinsic image algorithms. To
design this pipeline we needed to address several questions:

What judgements should the human annotators make?
Which images and points should we show each user?

How to present tasks to the user in an intuitive interface?
How to identify users who are correctly performing the task
and how to aggregate accurate judgements across users?

3.1 What judgements should we collect?

We would ideally collect ground truth reflectance information for
each point in an image. However, there are several challenges in
collecting such information in a crowdsourced setting that guided
how we collected judgements. A key issue is that humans are not
good at making absolute judgements about illumination intensity or
albedo, though they are reasonably accurate at relative judgements.
Thus, we decided to ask humans to compare pairs of points in an
image, rather than judge individual points. Asking for humans to
judge every pair in an image is prohibitively expensive, so instead
we gather judgements for pairs of sparsely sampled points (though
we experiment with different densities, as described below). Another
key issue is what question to ask of users—for instance, do we ask
them to compare relative illumination at a pair of points, or relative
surface albedo/material? We considered asking for illumination
judgements (e.g., “which point is more in shadow?”) but decided
against this, because explicit questions about illumination are chal-



(a) Sample points and edges

(b) Filter mirrors and transparent surfaces

(c) Compare surface reflectance (d) Aggregate user judgements

Figure 2: Our data collection pipeline. (a) We sample points and edges from over 5,000 photographs, (b) workers flag points on mirrors and
transparent surfaces, (c) users judge pairs of points and indicate which point has a darker surface reflectance (or if they are equal), and (d) we
aggregate judgements from 5 users for each pair of points (each edge is styled according to the aggregate results, as described in Figure 3).

lenging for humans [Ostrovsky et al. 2005]. Hence, we decided to
ask for material comparisons for pairs of points. We found that it
was important to ask this question in the right way, as phrasing is
often key for crowdsourced tasks, and material questions are partic-
ularly challenging for novices. We considered various possibilities
and phrasings and finally settled on showing users pairs of points
and asking them “which point has a darker surface color?” To make
sure that workers understand our task, we instruct new workers with
an interactive tutorial (described later).

3.2 Which images and which pairs of points?

Given the task described above, we next had to select our images
and the points in each image for which we collect annotations.

Images. Our goal was to assemble a broad collection of images
from the real world that are representative and free from image
editing and other filters. We chose images from the OpenSurfaces
dataset [Bell et al. 2013], which were gathered from Flickr and
contain a variety of indoor scenes (kitchens, living rooms, bedrooms,
and so on). We manually curated photos to remove images that do
not represent how the world looks to the naked eye, with effects such
as blur, excessive defocus, high noise, depth-of-field, fisheye, poor
exposure, black-and-white, visible vignetting, washed out colors,
infrared filters, distorted color tones, long-exposure effects, visible
HDR artifacts, stitched panoramas, text overlays, and extra borders.

Points. Next, we must decide which points in each image to com-
pare. To achieve good image coverage, and since it can be difficult
to reason about the relative diffuse reflectance of points that are far
apart in an image, we select points that are approximately equally
spaced. In particular, we sample image points using Poisson disk
sampling with a minimum radius (we use 7% of the image diameter).

Since we are sampling points that could lie on reflectance disconti-
nuities, we remove potentially difficult judgements from the initial
set of Poisson-disk-sampled points. Specifically, we remove (a)
points within 4 pixels of a strong edge (as determined with a Canny
edge detector), (b) over- or under-saturated points (removing points
where (r + g 4+ b)/3 < 0.02 or > 0.98) and (c) points whose local
neighborhoods have significant variance in color (removing points
where the coefficient of variation of chromaticity withina 9 x 9
pixel window is above 0.5).'

Finally, we chose to exclude points where the concept of diffuse re-
flectance is not well-defined, in particular, points with transparent or
mirror-like appearance. We filtered out such points using a separate
user task run as a preprocess on the set of points (see Figure 2(b)).

Pairs of points. Now that we have a list of candidate points in an
image, we want to choose a set of pairs of points to compare. Since
we are asking users the question: “which point has a darker surface

IThe coefficient of variation is a “normalized” measure of variance com-
puted as the sample standard deviation over the mean.

color?”, we want the points to have similar chromaticity, so that the
surface reflectance intensity can be easily compared. We also do
not want to sample all O(n?) pairs of points in each image, since
this would lead to excessive redundancy and over 1,000 pairs per
photo (which is expensive to annotate for all images). Instead, we
compute a Delaunay triangulation of the points, then reject edges of
this triangulation where the difference in chromaticity between the
point pair is too high (pairs where the Euclidean distance between
points in [r, g, b]/(r + g + b) chromaticity space is > 0.125).

After removing these edges, we go back and try to add new edges,
by considering all possible edges that do not intersect existing edges
and are within our chromaticity threshold. We greedily add such
edges, starting from the shortest edge in the set, skipping edges that
intersect an existing edge. Finally, we delete any edge that is not part
of a cycle; edges in cycles can be cross-checked against each other,
allowing us to verify consistency of edges during our subsequent
data analysis. On average, the above process results in 44 £ 16
points and 106 =+ 45 pairs per image.

Dense sampling. To understand the effect of image scale on hu-
man comparisons, we created another set of more densely sampled
edges on a subset of images. In particular, we selected about 400
whitebalanced photos and sampled points with a Poisson-disk sam-
pling radius of 3% of the image diameter. Of the set of whitebalanced
photos, we selected about 200 from images that had the most edges
discarded by our chromaticity threshold, 100 photos at random, and
a final 100 from photos where intrinsic image algorithms perform
poorly (according to our metric described in Section 3.5). For these
denser points, we do not threshold edges based on image chromatic-
ity, as nearby points tend to be on the same object, and are thus
easier to judge. Figure 3 shows example sparse and dense points.

3.3 Annotation interface

Our user interface for collecting annotations, shown in Figure 2(c),
shows the user an image and asks them, for a particular pair of pixels
(indicated with crosshairs and labeled Points 1 and 2), which of the
two points has a darker surface color. The user can then select one
of three options: Point 1, Point 2, and About the same. We ask
users to specify their confidence in their assessment as Guessing,
Probably, or Definitely, as was done by [Branson et al. 2010].

Tutorial. While humans are skilled at brightness and color
constancy—i.e., discounting lighting when comparing surface re-
flectance (across a range of typical illumination conditions)—they
are not used to explicitly thinking about this effect. We found that
if one asks users to compare surface color and ignore lighting, a
sizeable portion (almost half) of workers misunderstand the task
as “which image pixel is darker?”. We were able to reduce this
proportion to about 25% by adding a tutorial which explains ex-
actly the distinction between pixel intensity difference and surface
reflectance difference. The tutorial then presents several test scenes
and provides feedback and the correct answer if the worker makes a
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Figure 3: Aggregated human judgements for an example scene. The edges connecting points indicate the aggregated reflectance judgement
comparing the two points. We sample points at two different densities: (a) sparsely, at 7% of the image width and (b) densely, at 3%.

mistake. We chose difficult test scenes that force users to understand
concepts such as: local highlights do not affect surface reflectance,
and viewing the scene as a whole is sometimes necessary to visually
comprehend and compare reflectance. The tutorial we developed is
shown in the video and included on our website.

Efficient input. Since users are to provide thousands of answers,
we designed an interface that allows for rapid input. For each photo,
our interface displays the photo in its entirety, pauses for 1 second,
and then zooms to show a pair of points. Once the user indicates
their answer for that pair, the interface smoothly zooms to the next
pair of points. We use van Wijk smooth zooming [van Wijk and Nuij
2003] (implemented by D3 [Bostock 2013]) to quickly show the
next pair of points. At any time, users can zoom in/out, pan around
the image, or repeat the zoom animation and have the points flash to
make them easier to see. Users can also return to the previous pair
and enter a new answer.

Users had unanimously positive feedback regarding our task UI:

e “Fun. It’s exactly what I wish there was more of on MTurk as
far as image categorization/similar HITs go.”

e “This task is very well-designed and easy to understand and
complete. The zoom function is quite helpful.”

e “These are addicting as all hell.”

Mirror and transparent surfaces. Prior to asking users to judge
relative surface reflectance, we filter points through an initial stage
in which users flag points as being either on a mirror or on a trans-
parent surface (Figure 2(b)). As with our comparison task, a tutorial
explains the types of surfaces we want filtered and lets users practice.
See the video for more illustrations of our two user interfaces.

3.4 Data verification

After showing a pair of surface points to multiple workers, we want
to classity that pair into one of three categories: (1) Point 1 has a
darker reflectance than Point 2, (2) Point 2 has a darker reflectance
than Point 1, and (3) they have approximately the same reflectance.
We could do simple majority voting on the user-provided input to
determine the category; however, consistent with other work on
crowdsourcing, we found that the raw input is too noisy for this
simple approach to work well.

On Mechanical Turk, there are thousands of workers of varying
skill. While we believe that almost all the workers are capable of
performing the task, we found that a significant fraction of workers
(about 31%, based on our analysis below) either did not try to do the
task correctly, or did not understand the instructions, even after the
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Figure 4: Histograms of worker performance (left) and time spent
(right). Vertical axis on both plots: number of users. Left: per-
centage of sentinel data answered correctly. Right: time spent and
effective wage (pay per task / time spent).

tutorial where they can try out the task and receive feedback explain-
ing the correct answer. To address this problem, we take three steps
to ensure high-quality data: (1) we replicate every task (i.e., each
pair of points) to at least 5 workers, (2) we insert “sentinel” objects
with known answers into each task, and (3) we use the CUBAM
machine learning algorithm [Welinder et al. 2010] to automatically
model user competence and bias when computing consensus labels.

Sentinels. Inspired by the microtasks work of Gingold, et
al. [2012], each of our tasks (also known as a “HIT” on AMT)
contains 25 comparisons plus 5 “sentinel” comparisons drawn from
a set of known answers. To hide which items are sentinels, our
server dynamically selects 5 test items that the worker has not seen
before. As a user submits tasks, we measure their accuracy on the
sentinels. The moment a user makes at least 5 mistakes and has an
average accuracy below 80%, that user is blocked from performing
the task. We add the test for average accuracy to avoid prematurely
blocking users. When a given user has seen all test items, we stop
serving the 5 extra comparisons, as the user has proven to be accu-
rate enough on all sentinels. We chose to test a user across HITs,
rather than including a large amount of sentinel items inside each
HIT since we found that workers maintain approximately the same
accuracy between submissions. This wastes less resources ensuring
that workers are behaving correctly. Figure 4 shows the distribution
of worker scores on sentinel items. With this method, about 31%
of users were blocked. Users seemed appreciative of the fact that
the effective pay increased after the sentinels were finished, and we
only identified a single user who passed our tests and later began
submitting random answers (some time after the sentinels finished).

Modeling workers. Once we have filtered out users who are not
correctly performing the task, we must aggregate the reliable answers
to obtain a single judgement .J; for each pair of points. Since some
comparisons can be genuinely ambiguous, we would like to assign a
confidence (or weight) w; to each judgement J;. Further, different



users may have different competence and internal thresholds when
comparing surface reflectances, and we would like to compensate
for these effects. The CUBAM user model [Welinder et al. 2010]
lends itself to these issues, but requires that the questions have binary
answers, while our judgements have 3 possible answers (“Point 17,
“Point 27, “About the same”). However, we can convert our 3-class
answers into two binary answers by imagining that users are making
the following decisions in a small decision tree:

1. Do the two points have the same reflectance?
2. If not, does the darker point have a darker surface reflectance?

For example, a response of “Point 1" is converted to (“No”, “No”),
if Point 2 is darker than Point 1. Given this conversion, we solve
for the most likely competence and threshold for each user and the
most likely binary response for each decision using CUBAM. Thus,
for each pair of points, we are able to model two forms of user bias:
decision (1) models how similar two surfaces have to be before the
user considers them to be the same, and decision (2) models whether
the user confuses reflectance and image intensity by indicating that
points in shade always have a darker reflectance.

To simplify notation, we denote the two
points as “D” (darker pixel) and “L” D
(lighter pixel). We use luminance for

this step (CIELAB) since we want to

capture human perception. For exam- L
ple, in Figure 5, point L has a darker
surface reflectance and thus the correct

judgement for this pair is J; = L. Figure 5: Points on a

fabric surface with a
Given the two-decision model of each cast shadow.
comparison, we use CUBAM to com-
pute a score for each decision, where a score of 0 indicates ambigu-
ous, +1 is strong “yes”, and —1 is strong “no”. If we let ¢; 1 and
¢ 2 be the CUBAM scores for the 7™ user judgement for our two de-
cisions above, we use the distance from 0 as our confidence/weight
w; for judgement J;:

(E, Ci,l) ifCi,l >0
(D7 01‘,2) if Ci,1 < 0and Ci2 > 0 (1)
(L, —ci2) else

(Ji,wi) =

where E indicates that users judge the points to have equal or “about
the same” reflectance intensity. Finally, we map the judgements
from {E, L, D} to the original set of possible answers {E, 1,2}.

Running the experiment. As workers were performing tasks, we
periodically reviewed subsets of the aggregated answers. Whenever
we decided that the aggregated answer for an unambiguous compari-
son was incorrect, we corrected the comparison, excluded it from
future aggregation with CUBAM, and added it to our set of sentinel
test items. This ensures that our sentinel items are difficult—i.e.,
discriminative in selecting workers who are not trying very hard.
This strategy is similar to “hard negative mining” used in machine
learning [Felzenszwalb et al. 2008] (the idea of using hard examples
to train good classifiers).

To fairly compensate workers, we approved all submissions instantly
(even those performed incorrectly). We were surprised to discover
that this strategy roughly doubled the number of simultaneous work-
ers for the same rate of pay. Users were very appreciative of the fast
and certain approval.

3.5 Error metric: WHDR

In order to use our judgements to evaluate intrinsic image decom-
positions, we need a way to numerically evaluate a decomposition

(R, S) given judgements J; and weights w;. We propose a new
metric, the “weighted human disagreement rate” (WHDR), which
measures the percent of human judgements that an algorithm dis-
agrees with, weighted by the confidence of each judgement:

Sywie 1 (i # Jis(R))
> wi

where R is the algorithm output reflectance layer, 1(-) is the unit
indicator, jm is the judgement predicted by the algorithm being
evaluated, and ¢ is the relative difference between two surface re-
flectances where people just begin to switch between saying “they
are about the same” (E) to “one point is darker” (1 or 2). To trans-
form the algorithm reflectance layer R into the same units as the
judgements (answers in the set {1, 2, E}), we must threshold dif-
ferences between the points used in the human judgement in the
reflectance layer R. Because R is only defined up to a scale factor,
we compare two reflectances using their ratio, as:

WHDR;(J, R) = )

R 1 ifRyi/Rii>146
Jis(R) = 2 ifRii/Re;>1+6 3)
E else

where R ; is the reflectance sampled at point 1 for the i judgement
(and similarly for R2 ;). For all of our results, we set 6 = 10%.

3.6 Discussion and results

Using our AMT pipeline, we obtained 4,880,372 responses from
1,381 workers which we aggregated to obtain 875,833 comparisons
across 5,230 photos. Of these, 397 photos were also sampled at
a higher density to obtain 358,293 comparisons. In Figure 3, we
show example aggregated judgements, where directed edges indicate
which point is darker, blue/orange edges have high/low confidence,
and red points are on a mirror or transparent surface.

Judgement self-consistency. Since we discarded edges that are
not part of cycles, we can estimate the self-consistency of our dataset
by measuring the fraction of triangles that are consistent (e.g., in-
equalities { R1 > Ra, R2 > Rs, R3 > R} are not consistent). For
each photo, we divide the total weight of consistent triangles by the
total weight of all triangles (the “weight” of a triangle is the sum
of the weights of its edges). Averaging across all photos, we find a
mean weighted triangle consistency of 92.8%.

User-reported confidence. To assess the accuracy of user-
reported confidence, we correlated our judgement weights w; with
user-reported confidence by computing the mean weight w; for all
answers at each level of confidence. We found that inter-user agree-
ment and user-reported confidence were indeed correlated: “Guess-
ing”, “Probably”, and “Definitely” responses had a mean weight (£
standard deviation) of 0.54 4 0.41, 0.63 £ 0.39, and 0.74 £ 0.34,
respectively. However, we found that in general, most users did
not reliably report their confidence, and thus, despite the positive
correlation, we chose not to use the user-reported confidence for any
further analysis. In future runs of this task we could eliminate the
confidence question to decrease both annotation time and cost.

Validation: varying lighting. To further validate our user judge-
ments, we collected 11 photographs across 4 scenes with identical
camera viewpoint but varying lighting conditions from [Boyadzhiev
et al. 2013], and then measured the extent to which user judgements
changed as a result of the lighting change. The scenes are included
on our website and in the supplemental material. On average, we
found that for sparsely sampled points, 10.3% of the judgements
changed state, and for densely sampled points, 8.7% changed. Judge-
ments that change state are incorrect in at least one of the photos, so



we would like our confidence score to be lower for these judgements.
Indeed, we find that the mean confidence for consistent judgements
(dense: 0.80, sparse: 0.75) is about twice that of judgements that
change state (dense: 0.38, sparse: 0.48). This indicates that CUBAM
is correctly assigning a lower weight to unreliable judgements.

4 Intrinsic Images Algorithm

Our overarching goal is to develop algorithms that can perform
accurate intrinsic image decompositions for real-world photographs
of whole scenes “in the wild.” For images of scenes, our hypothesis
is that it is important to model long-range interactions in which
objects tend to share a small number of reflectance values. With this
in mind, we designed a new algorithm that has a discrete working set
of hypothesis reflectances, and considers all O(n?) pairs of pixels
simultaneously when computing reflectances. Further, because we
have collected a large dataset of image judgements, we can explore
new algorithms whose parameters can be automatically learned
using training data, rather than by hand.

Problem formulation. To recap, an intrinsic image algorithm
takes as input a photograph (in our case, an Internet photo of an
indoor scene), and seeks to decompose the image into a product of
reflectance (albedo) and shading (irradiance) at each point. This
is a very under-constrained problem, as there are infinitely many
possible reflectance and shading layers that multiply to explain an
input image; hence we want to find the decomposition that most
likely explains the image, under some priors on what makes a likely
decomposition. In other words, given RGB image I, we want to
find the RGB reflectance layer R* and shading layer S* that is most
likely under probability distribution p:

R*,S* = argmaxp(R, S |I) “4)
R,S
such that Ij = R; - S§

where I7 is color channel ¢ € {r,g,b} for image pixel 7 (and
similarly for R and S).

Formulated this way, the key questions are: (1) how to define the
probability distribution p(R, S|I) and (2) how to efficiently find
the best R and S under this distribution. While a full answer to
(1) would involve understanding the statistics of natural scenes and
illuminations, often these statistics are approximated with a set of
priors on R and S. Our algorithm builds on important priors that
have appeared in the literature; our key insight is to apply them
in a more global sense, reasoning about all O(n?) pairs of pixels
in an image, whereas most previous methods only consider pairs
of neighboring pixels. This global reasoning is a powerful way to
encode the observation, true of many real world indoor scenes, that
pixels far apart in the image can still often have the same reflectance—
for instance, all of the walls in a scene often have the same paint
color. In particular, we assign a high probability to decompositions
that are consistent with the following priors, each of which have
been suggested in prior work:

e Pixels that are nearby, and that have similar chromaticity or
intensity, also have similar reflectance.

e Reflectances are piecewise-constant [Land and McCann 1971;
Liao et al. 2013; Barron and Malik 2013b].

e Reflectances are sampled from a sparse set [Omer and Werman
2004; Gehler et al. 2011; Shen and Yeo 2011].

e Certain shading values are a priori more likely than others [Bar-
ron and Malik 2013b].

e Neighboring pixels have similar shading [Garces et al. 2012].

e Shading is grayscale, or the same color as the light source.

These priors are not new, and different methods of global reasoning
have been proposed, such as connecting distant image regions with
similar texture [Zhao et al. 2012] or optimizing for sparsity in the
reflectance layer [Shen and Yeo 2011; Barron and Malik 2013b]. Our
method constructs the reflectance layer by drawing from a sparse set
of reflectances, a technique inspired by [Gehler et al. 2011].

Our key contribution is that we show how to incorporate all these
priors in a global sense, simultaneously reasoning about all O(n?)
pairs of pixels. To do so, we make use of recent work on efficient
inference for dense conditional random fields (CRFs) by Kréhenbiihl
and Koltun [2011; 2013], but show how to apply their framework to
the problem of intrinsic image decomposition.

Algorithm Overview. Our algorithm works as follows. First, we
hypothesize a set of reflectances R that are likely to exist in the
image—one can think of this set as a “palette” of reflectances that we
can draw on for that image. The set R is unique for each image and,
for a typical run of our algorithm, will contain 20 entries once our
algorithm converges. After first choosing an initial set of reflectance
colors R using clustering, we iterate between two stages:

1. We label each pixel with a reflectance chosen from R such
that p(R, S | I) is maximized.

2. We adjust the reflectances in R by minimizing discontinuities
in the shading layer S.

The first stage improves the reflectance layer, and is optimized using
discrete labeling; the second stage improves the shading layer, and
is optimized using continuous L' minimization. We now describe
each stage of the algorithm in detail.

Note on grayscale shading. Since we assume that shading is
grayscale, our problem only requires solving for scalar reflectance
intensity R and shading intensity .S. Given these scalar values, we
can expand to a full RGB decomposition by:
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where the chromaticity of S is assumed to be grayscale and the
chromaticity for R is taken from the input I.

4.1 Initialization

We assume in what follows that our input image I has a linear
response (in our work, we map our downloaded images from an
assumed sRGB space to linear). To compute an initial set R, our
algorithm starts by performing a k-means clustering of pixel colors
in the input image (similar to [Garces et al. 2012]). Rather than
work in RGB space, which has correlated channels, we transform
the colors to better cluster reflectances. For diffuse surfaces lit with
pure white light, image pixels on that surface will have the same
chromaticity. To take advantage of this invariant, we transform RGB
space to three new axes: (1) pixel intensity, (2) red chromaticity, and
(3) green chromaticity:

r+g+5b r g

) ; 6
3 r+g+b r+g+b ©

[T7gab] = ﬁ

Under ideal conditions (white lighting, colored diffuse surfaces,
no inter-reflections), this transform perfectly separates different re-
flectance colors along the second two axes. While more sophisticated
color spaces have been proposed [Omer and Werman 2004], we find
that Equation 6 is sufficient for initialization. When computing color
distances, we scale the intensity axis by 3 since chromaticity is a
better predictor of reflectance than intensity. Training against our
dataset, we found that a weight of 8 = 0.5 works well.



After performing k-means clustering in this color space, we trans-
form back to RGB and collect the cluster centers as our initial set R.
Note that while each reflectance in R is a RGB color, we only use its
intensity for the final output. We find that for our algorithm, keeping
R as RGB colors and then projecting down to scalar intensities
produces better results than simply using scalar intensity values. In
practice, we found that our algorithm is reasonably insensitive to the
number of clusters &, though k ~ 20 performs the best. Variations
on our method are explored later in Figure 7(b) and Table 1.

As described above, our algorithm then alternates between (1) assign-
ing each pixel with a reflectance selected from R and (2) optimizing
the palette of reflectances R itself to improve shading intensity .S.

4.2 Stage 1: Optimize reflectance

In the first stage, we would like to label every pixel in the input
image with a reflectance chosen from R. We use x to denote the
labeling, where x maps each pixel ¢ to a reflectance chosen from
our hypothesis reflectances R, denoted as R(z;). Each z; can be
thought of as an integer from O to k — 1 that acts as an index into
our palette R, so reflectance intensity R; = 3 > R°(z:).

The optimal reflectance labeling is obtained by maximizing p(z | I),
which is a discrete labeling problem. We now describe how we
model this probability.

4.2.1 Using fully connected conditional random fields

Recently, Krihenbiihl and Koltun proposed an algorithm for ap-
proximately minimizing a global objective function with a quadratic
number of terms in linear time [2011; 2013]. While their model was
originally proposed to improve object recognition and segmentation,
we show that it can be adapted for intrinsic image decomposition.
Their model considers objective functions of the form:

p(z|I) = exp{ sz ) Z%y‘(l‘i:l‘j)}

i<j
N
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where,
p(z|I) probability of labels = given image I
Z(I) partition function (normalizes the distribution)
1,7  pixel indices
x; discrete label for pixel ¢
f;  feature vector for pixel ¢
1;(+)  unary cost function for pixel ¢
i;(-,+)  pairwise cost function for pixels 7, j
™) ™ (negative-semidefinite) label compatibility
function
k™ () m™ (positive-definite) kernel function

The objective is maximized when x is chosen to minimize the costs
incurred by ;(x;) and ;;(zi, z;). An important feature of this
objective function is that there are O(n?) pairwise terms 1);;. When
maximizing p(z | I), we can omit the partition function Z(I) and
minimize the negative logarithm to arrive at an energy function:

E(z) = —logp(z |I) + const )

—sz T +Z"/’U Ti, T;)

i<j

The key insight of their algorithm is that when using a mean field
approximation to the CRF distribution, message passing (which is

O(n?)) can be approximated as high-dimensional filtering if certain
pairwise functions are used. They use the permutohedral lattice of
Adams et al. [2010], to perform filtering in linear time, thus obtaining
an O(nd) algorithm that approximately maximizes p(z | I), despite
having O(n?) terms, where d is the dimensionality of features f.
While their prior work does not quantify the error introduced by their
approximation, the model performs well in practice and converges
quickly. For example, with 640 x 480 images and 5-dimensional
features, optimization takes about 1 second with one CPU thread.

4.2.2 Probability model

Recall that in our model, the layer of labels x maps each pixel
to a reflectance chosen from our hypothesis reflectances R. We
now explain how we design functions ;, ¢;;, i1, k and features f
such that the optimal labeling x is a good estimate of reflectance
according to our priors.

Our energy function consists of two types of costs: (1) unary costs
1; for each pixel, where we want shading to be smooth and avoid
extreme values, and (2) pairwise costs 1/;; where we want reflectance
to be piecewise constant for all pairs of similar pixels. These costs
are represented in an energy function E(z) defined as a weighted
sum of three costs:

E(x) =wpkE ( )+ws

pairwise 1 ;

Es(x) + wi Fy(x) (10)

unary 9;

where E,(z) is a pairwise reflectance term, Fs(z) is a pairwise
shading term encoded as a unary term, and E;(z) penalizes extreme
values of shading. We now describe each term in more detail.

Pairwise reflectance £,. The most important term in our model
is our pairwise reflectance term F,,, which encourages pixels that
are nearby in position, chromaticity, and intensity, to be assigned
the same surface reflectance. We map each pixel to a 5-dimensional
feature space f that includes position, intensity, and chromaticity,
such that we expect Euclidean distance in this space to predict
reflectance distance. For every pair of pixels in the image, if the two
pixels are assigned a different reflectance, we pay a cost proportional
to the L' difference in this reflectance, Gaussian-weighted according
to the distance between the pixels in our feature space.

Mathematically, we define E), as:

1
0 =S nteew (~3l6 - £IE)  ap
1<J
(@i, z;) = |[log R(z:) — log R(x;)]l,
where p(+, -) is the label compatibility function and f; is the feature
vector for pixel i:
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Our feature vector describes each pixel ¢ in terms of its position
(pf,pY) normalized by the image diameter d, its intensity, and its
red/green chromaticity. Each feature is weighted by model param-
eters 0, 0;, and 6.. Under white illumination, two pixels with the
same reflectance will have the same chromaticity, so instead of using
RGB values for color features, we separate intensity from chromatic-
ity and weight them differently. The particular design of this term
(e.g., L' distances and Gaussian weights) is chosen in part so that
our dense CRF (Equation 7) can be efficiently optimized.

12)

As examples of how this term works, consider pixels that are nearby,
have similar chromaticity, and have similar intensity. For these
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Figure 6: Example decompositions using our algorithm for a variety of scenes. All outputs are rescaled and mapped to sRGB for display.

pixels, the Gaussian kernel exp (—3||f; — f;||3) will be large, thus
constraining these pixels to receive similar reflectances. In contrast,
for pixels that are nearby but have a very different chromaticity
and/or reflectance, our pairwise term E, will be small, allowing
the shading smoothness term E (described below) to constrain the
relative reflectance between nearby regions.

Shading smoothness E,. Another important feature of good
decompositions is that the shading channel tends to vary smoothly
across smooth surfaces. Such a smoothness prior on shading helps to
determine the relative reflectance across a smooth, textured object—
we want the texture of such an object to be correctly attributed to the
reflectance layer, with a smooth shading layer.

Hence, we would ideally include in our optimization a pairwise term
that depends on shading, such as the following:

2

2)
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pis (s, ;) = (log S; —log S;)* (13)
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where o is a Gaussian kernel parameter, p; = (pf, p?) is the posi-
tion of pixel ¢, and S is shading intensity, S; = >__I7/ > . R(x:).
However, including this term would require a label compatibility
function p, that depends on image features (since S; depends on
I,), which does not fit within the constraints of Equation 8. Instead,
we can approximate S; by solving the model iteratively, using the
shading channel from the previous iteration as our value for .S;. This
term now has the functional form of a unary term:

- 2
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where A; is a normalizing term chosen so that the Gaussian weights
sum to 1. Note that S¢~1) is a Gaussian blur of S®~1) and is fast
to compute. Each iteration, we gradually decrease the blur size ol

o = "STd (16)

where 65 is the normalized initial blur radius, d is the image diameter,
and ¢ is the iteration number. In the first iteration (¢ = 1), we find
that omitting this term () works better than initializing shading
intensity S ©) with the image intensity or with a constant. Since the
blur radius decreases each iteration, this term effectively results in a
coarse-to-fine method of smoothing the shading channel.

Absolute shading intensity £;. In addition to encouraging
smoothness of shading, we want to ensure that the optimizer does
not choose extreme values of shading for too many pixels, so we
add a penalty that pulls shading intensity S towards a constant:

Ei(x) :Z‘Si_g| a7

Training against our dataset, we find that S = 0.5 works well.

Optimizing the model. Using the method of Krihenbiihl and
Koltun [2013], we can find the discrete labeling x that approximately
minimizes Equation 10 in just a few seconds. If any labels are not
used in the solution, they are dropped from R.

4.3 Stage 2: Optimize for shading

In Stage 1, we obtained a hypothesis decomposition (R, S), as well
as an indication of which pairs of points have the same reflectance
(¢ and j have the same reflectance iff z; = z;). In Stage 2, we hold
the label assignments x fixed and continuously optimize the palette
of reflectances R in order to improve shading intensity S.

Following Garces et al. [2012], we improve our guess of reflectances
by minimizing shading discontinuities between adjacent regions
across the image. Since adjacent pixels are likely to be nearby
in 3D, they are likely to receive the same illumination. However,
inside an image region that is assigned a single reflectance label,
shading is already constrained (since setting a value for either R or
S fixes the other layer). Thus, if we hold the labels x fixed, we can
only minimize shading discontinuities across reflectance boundaries,
where z; # x;.

We can update the set of reflectances by multiplying R by a vector
of scalars r, which allows us to regularize the relative change r:

R (i) =P () - RV (4) (18)
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Figure 7: Algorithm variants. To illustrate the effect of each term, we take the parameter settings found from training and remove different
terms. The WHDR errors for each variant increase from left to right, and are listed in Table 1.

We solve for r by minimizing shading discontinuities:

O = arg min Z |log S; — log Sj| (19)
" (i.j)EB

log S; = log <Z If) —log (Z R(t_l)’c(a:i)> — logr(x;)

c

where S; is the shading intensity, and B is the set of adjacent pix-
els (¢, j) with different reflectance labels x; # ;. By working in
log space, we avoid potential problems with numerical instability
and divide-by-zero. We efficiently optimize Equation 19 with iter-
atively reweighted least squares (IRLS), adding a small damping
term 10~8|| log ||? to each iteration of IRLS since Equation 19 is
only well-defined up to a constant. Note that we are solving for
|r| = k = 20 variables, not an entire shading layer, and thus this
step converges in a few seconds.

Final iteration. As a final optional step, we can split apart con-
nected components in the discrete reflectance map, prior to the last
L' minimization (Equation 19). While this step is not crucial, we
find that it provides a small improvement for most scenes. Specifi-
cally, we take each connected region in the reflectance image and
assign it to a new unique label. As a result, our number of labels
in R jumps from around 20 to around 3000. We find that small
connected components in the reflectance channel are typically part
of detailed textures. In these cases, smoothing the shading channel
performs better than attempting to reason in reflectance space.

Number of iterations. We always run the algorithm for a fixed
number of iterations since our shading smoothness term Es changes
every iteration (the blur radius decreases). We find that while the
algorithm produces a reasonable result in just a few iterations, the
decomposition continues to improve, and that about 25 iterations is
sufficient. As listed in Table 1, we obtain mean error (WHDR g9 ) of
23.5%, 21.5%, and 21.0% after 1, 10, and 25 iterations respectively.

5 Results

In this section we use our dataset to evaluate our algorithm and a
range of public algorithms for intrinsic image decomposition. We
evaluated our algorithm on all images in our dataset. Some example
decompositions are shown in Figure 6. Generally we find that our
algorithm performs very well for real-world scenes. While it is
particularly good at finding a single reflectance to explain large
continuous regions, it can also handle intricate textures such as
wallpapers and bricks. Even when there are many surfaces that do
not fit the diffuse reflectance model (such as glossy metals or tinted
windows), the model often returns a reasonable result.

Algorithm variant WHDR
(a) As described 21.0%
Add reflectance prior E,.(z) = — >, log p(R(z:)) 21.0%
Add chromaticity prior 21.1%
Use more clusters (k = 30) 21.2%
Initialize shading 5 = § 21.2%
Initialize shading Sfo) = % > I8 21.4%
Eq. 19: expand B to include 3-pixel windows 21.4%
Stop after nier = 10 iterations 21.5%
Don’t split connected components in final iteration 21.6%
Eq. 19: use L? instead of L* 22.2%
Stop after njer = 1 iteration 23.5%
Use L' in shading smoothness (E in Eq. 14) 24.6%
(b) Use scalar R instead of RGB 25.4%
(c) Remove shading smoothness (ws = 0) 26.0%
(d) Limit pairwise to local (6, = 0.001) 36.1%
(e) Remove pairwise reflectance (w, = 0) 36.3%
(f) Remove shading regularization (w; = 0) 36.4%

Table 1: To justify our design choices, we show that many variants
produce higher error. Variants (a) through (f) are shown in Figure 7.
The variants are described in more detail in the supplemental.

5.1 Training

Using our large dataset, we explored the effects of changing both
the parameters and the structure of our algorithm. We can delete
different terms from our energy function E'(x) (Equation 10) or we
can try adding new terms such as priors on absolute reflectances.
Figure 7 shows the effect of deleting different terms and Table 1 lists
the training error for an even larger set of variants.

In total, we evaluated 295 variants on the full data set and found the
following configuration to have the lowest mean error (WHDR ;o ):
w; = 500, wp, = 10000, ws = 20000, 0. = 0.025, 6; = 0.1,
0, =0.1,6, =0.1, 3 =0.5, 5 = 0.5, k = 20, njer = 25.

5.2 Ranking

We evaluated a set of existing open-source algorithms over our
entire dataset. To compare these algorithms, we evaluate all of
them using two scores. First, we compute their weighted hu-
man disagreement rate (WHDR) for each photo and average the
scores across all photographs. Second, for each photograph, we
rank each algorithm by its WHDR score. If two algorithms tie
(which is possible since WHDR is discrete), we average together
the ranks of those algorithms. For example, if 4 algorithms get
scores [20%, 11%, 20%, 2%)], the corresponding ranks would be
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Figure 8: Visual comparison of our algorithm against several recent open-source algorithms. Each algorithm uses the best parameters found

from training (i.e., minimizes mean WHDR oy, across all photos).

Our algorithm | 21.1% Our algorithm | 2.60 Our algorithm | 2.30

[Zhao et al. 2012] |23.7% [Zhao et al. 2012] | 3.16 [Zhao et al. 2012] |2.69

[Garces et al. 2012] | 25.9% [Garces et al. 2012] | 3.77 [Garces et al. 2012] 3.39

Retinex (gray) 27.3% Retinex (gray) | 4.10 [Shen et al. 2011] | 4.29

Retinex (color) 27.4% Retinex (color) | 4.13 Retinex (color) | 4.82

[Shen et al. 2011] | 32.4% [Shen et al. 2011] | 5.03 Retinex (gray) | 4.86

Baseline (const R) | 36.6% Baseline (const R) | 5.75 Baseline (const R) | 5.89

Baseline (const S) | 51.6% Baseline (const S) | 7.45 Baseline (const S) | 7.76

(a) Mean WHDR g, over all edges.

(b) Mean rank of WHDR g, over all edges.

(¢) Mean rank of WHDR1 o, over dense edges only.

Figure 9: Quantitative comparison of our algorithm against several recent open-source algorithms, using mean weighted human disagreement
rate (WHDR o). For (c), only the 397 densely sampled photos are considered (about 900 judgements per photo with a minimum separation of
3% of the image diameter). All values are computed using leave-one-out cross validation. See Section 5.2 for details.

[3.5,2,3.5,1]. We then compute the mean rank of each algorithm
as its average rank across all photos. When computing WHDRs we
use & = 10%, though we find similar results with 5% and 15%.

Figure 9 illustrates our evaluation of several algorithms according to
both WHDR and mean rank, including: [Zhao et al. 2012], [Garces
et al. 2012], Retinex [Grosse et al. 2009], [Shen et al. 2011], and two
baselines. The baseline decompositions are “const R” (R; = 1) and
“const S” (S; = 1), and are converted from intensity to RGB using
Equation 5. We attempted to include [Gehler et al. 2011] but found
that it was too slow to include in our 5,000+ photo evaluation.

Fair evaluation. Since none of these algorithms were given the
opportunity to train for our dataset, we tried to make the evaluation
fair by trying a range of parameters for each algorithm. We varied
both thresholds for Retinex; k for [Garces et al. 2012]; wq for [Shen
et al. 2011]; and chromaticity threshold ¢, texture patch distance,
and texture patch variance for [Zhao et al. 2012]. In addition, we
tried two variants of [Shen et al. 2011] and [Zhao et al. 2012]:
one as published, and a second where we take sRGB into account
when loading the image. In total, we computed over 2,500,000
decompositions for our 5,000+ photo data set. To measure a final
test error for each photo, we use leave-one-out cross-validation (i.e.,
test each photo using the best parameters for all other photos).

Our algorithm. Out of all the methods we evaluated, our algo-
rithm both has the lowest mean error and the best average rank,
averaged across all photos. This is consistent with our visual judge-
ment of the results.

[Zhao et al. 2012]. We find that for real-world images, [Zhao et al.
2012] performs quite well. The method has the strength of Retinex
in that it is accurate at decomposing texture on smooth surfaces,
while also having sparse global constraints to connect distant parts
of the image together.

[Garces et al. 2012]. The next best performing algorithm is
[Garces et al. 2012], which is designed for real-world scenes. Most
errors in output from [Garces et al. 2012] appear to come from incor-

rect clustering of surface reflectances. Highly textured regions are
often merged together into a single component, causing the texture
to incorrectly appear in the shading layer.

Retinex [Grosse et al. 2009]. The Retinex algorithm [2009] is
the simplest algorithm, and performs surprisingly well for its algo-
rithmic complexity. We found that the optimal threshold for whole
scenes (color threshold 0.7, gray threshold 0.5) is very different than
the optimal threshold for the MIT Intrinsic Images dataset (color
threshold 0.075, gray threshold 1.0). We were also surprised to find
that grayscale intensity was a better predictor of reflectance than
color, for scenes “in the wild”. Consistent with [Grosse et al. 2009],
we note that the L? variant of Retinex performs significantly worse
than L' (41.8% versus 27.4%).

[Shen etal.2011]. Finally, we found [Shen et al. 2011] to perform
only slightly better than the baseline in terms of mean error. This
seems to correspond to our visual judgement of the output, in which
high-frequency texture details are often put in the shading channel,
and shading details are not removed from the reflectance layer.

Visual comparison. To understand the typical kinds of visual arti-
facts made by each algorithm, we include an example decomposition
in Figure 8. Since there is significant variety across photos, and the
relative ranking between algorithms changes for each photo, this
single example is not sufficient to rank algorithms. More visual
comparisons are included in the supplemental material.

Dense vs sparse edges. We have two edge lengths: “sparse”,
with a point spacing of 7% of the image diameter, and “dense”, with
a point spacing of 3% of the image diameter. We can repeat the
evaluation with only dense edges, as shown in Figure 9(c). We find
that [Shen et al. 2011] performs better in a close-range evaluation,
which is to be expected since the method optimizes over local win-
dows. To make sure that it is not the distribution over edge types
that is affecting the results, we compared the distribution of edges
and found that it was about the same for both groups: for sparse
edges, 62.8% are equal (“about the same”) and 63.9% of the dense
edges are equal.



Median individual human. Finally, we can place humans on the
scale in the same units, by excluding some user responses from the
aggregation and then testing them against the user majority, using our
WHDR metric. We exclude 100 random users from the aggregation,
and test the excluded users against the responses aggregated from the
remaining users. Blocked users are excluded from both sets. Since
we are evaluating algorithms against humans, who are inconsistent,
this is effectively the lowest error we can expect an algorithm to
obtain. Averaged across all photos in our dataset, we find that
humans have a median WHDR = 7.5%.

5.3 MIT Intrinsic Images dataset

‘We have validated our algorithm against the MIT Intrinsic Images
dataset [Grosse et al. 2009], and found that it performs reasonably.
‘We obtained a mean training and test error of LMSEgo = 0.027
and LMSE2p = 0.031 respectively (which matches color Retinex
LMSE2o = 0.031). This is certainly not the lowest error reported
for this dataset. For example, [Barron and Malik 2013b] explicitly
models shape and illumination and achieves a lower error, but is lim-
ited to individual objects. Our method focuses on real-world scenes,
which have very different statistics from small, cleanly segmented
purely diffuse objects.

6 Limitations and future work

Weaknesses of WHDR. When visually evaluating decomposi-
tions, there are many different mistakes that algorithms make: tex-
ture variations in S, shadows/highlights in R, etc. No algorithm
avoids all mistakes. An important motivation was therefore to have a
large dataset to evaluate algorithms on a wide variety of scenes, each
with their own challenges. The question of ranking algorithms be-
comes: how much should we penalize each mistake? Our “weighted
human disagreement rate” (WHDR) metric is one such answer. We
recognize that certain mistakes are not well captured by WHDR,
such as a decomposition that does not model colored shading (since
our annotations only measure intensity) or that leaves texture in the
shading channel (since the sampling is sparse). Conversely, WHDR
is sensitive to errors on single-color surfaces (e.g., walls), where
humans tend to be confident and consistent. While there is room
for proposing other metrics, we found that algorithms that achieved
lower WHDR also achieved qualitatively better results.

Reflection models. Our dataset currently filters out mirror and
transparent objects, but there is still a wide range of surfaces that
do not fit diffuse reflectance models. We chose not to ask users to
estimate gloss since many glossy items appear diffuse if they are
not oriented to receive a highlight. Nonetheless, we would like to
explore this issue in the future and expand our image formation
model to include glossy reflection.

Colored lighting and hard shadows. Scenes in the real world
have colored illumination (Figure 10), especially when considering
interreflections between colored surfaces. It is common for scenes to
have multiple dominant illuminating colors, such as a blue sky and
an incandescent light bulb. Further, hard shadows with colored illu-
mination cause the shadowed region to have a shift in chromaticity.
For these scenes, our algorithm may put the shadow discontinuity
in the texture channel. While the common assumption that shading
is grayscale works reasonably well for many scenes, we would like
to consider methods and collect datasets that capture color in the
shading channel and do not assume that S is grayscale.

Synthetic images. We would like to further evaluate the quality
of human judgements by using ground truth synthetic rendered
images. However, the main challenge with synthetic images is that it
is extremely difficult to replicate the true diversity and variety found

Figure 10: Challenging scenes that violate our assumptions. Using
the parameters from Sec. 5.1, we obtain WHDR = 67%, 45%, 43%.

in Internet photo collections. Further, many 3D scenes available
online do not accurately model reality and include features such as
meso-scale geometry in albedo maps.

Photograph variety. While our dataset does a reasonable job of
covering typical indoor photographs, there are only a few outdoor
and nature scenes (e.g., in the “staircase” category), and thus it does
not fully represent the statistics of all images available online. Future
work could include determining whether the same priors (piece-wise
constant reflectances, sparse set of intensities, etc.) are useful in
decomposing outdoor photographs.

7 Conclusion

In this paper we introduced a large scale dataset (5000+ images) for
Intrinsic Images in the Wild, with crowdsourced pairwise annotations
of reflectance intensity comparisons. We also introduced a dense-
CRF-based intrinsic image decomposition algorithm that considers
long-range interactions to achieve better decomposition on our new
database, while maintaining local detail. While we have taken steps
towards intrinsic images for real-world scenes and uncalibrated
photos, many challenges and avenues of future work remain on this
problem. Just as the availability of the MIT Intrinsic Images dataset
was important to galvanizing research on intrinsic image algorithms,
we hope our public database and code will help drive improvements
in intrinsic image decomposition in the wild.
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