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6. Pixel Labels 8. Shading Prior 9. Evaluation
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* Fine-tune PixelNet [3] to predict smooth/non-
smooth shading for each pixel
» Balance classes with 2 : 1 : 1 ratio
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- To compare our smooth/non-smooth predictions to
existing methods (which predict a full shading layer):
» Threshold the gradient of shading
- Compare the resulting 2-class labels

» Our method achieves competitive results
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» Use smooth shading predictions as a
prior in Retinex

» Promising initial results

* More research is needed to seamlessly

- Final pixel labels from mturk annotations and incorporate prior

depth/normal discontinuities
« Green: smooth shading (mturk)
- Cyan: shadow boundary (semi-automatic)
» Red: depth/normal discontinuity (automatic)
» Use two classes for training:
« Smooth shading: green
» Non-smooth shading: cyan + red

 Future:
* New shading benchmark for intrinsic images that
combines reflectance and shading
» Improved fully convolutional training
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