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Abstract

Recognizing materials in real-world images is a challeng-
ing task. Real-world materials have rich surface texture,
geometry, lighting conditions, and clutter, which combine
to make the problem particularly difficult. In this paper, we
introduce a new, large-scale, open dataset of materials in
the wild, the Materials in Context Database (MINC), and
combine this dataset with deep learning to achieve material
recognition and segmentation of images in the wild.

MINC is an order of magnitude larger than previous ma-
terial databases, while being more diverse and well-sampled
across its 23 categories. Using MINC, we train convolu-
tional neural networks (CNNs) for two tasks: classifying
materials from patches, and simultaneous material recogni-
tion and segmentation in full images. For patch-based clas-
sification on MINC we found that the best performing CNN
architectures can achieve 85.2% mean class accuracy. We
convert these trained CNN classifiers into an efficient fully
convolutional framework combined with a fully connected
conditional random field (CRF) to predict the material at
every pixel in an image, achieving 73.1% mean class ac-
curacy. Our experiments demonstrate that having a large,
well-sampled dataset such as MINC is crucial for real-world
material recognition and segmentation.

1. Introduction
Material recognition plays a critical role in our under-

standing of and interactions with the world. To tell whether
a surface is easy to walk on, or what kind of grip to use
to pick up an object, we must recognize the materials that
make up our surroundings. Automatic material recognition
can be useful in a variety of applications, including robotics,
product search, and image editing for interior design. But rec-
ognizing materials in real-world images is very challenging.
Many categories of materials, such as fabric or wood, are
visually very rich and span a diverse range of appearances.
Materials can further vary in appearance due to lighting and
shape. Some categories, such as plastic and ceramic, are of-
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Figure 1. Overview. (a) We construct a new dataset by combining
OpenSurfaces [1] with a novel three-stage Amazon Mechanical
Turk (AMT) pipeline. (b) We train various CNNs on patches from
MINC to predict material labels. (c) We transfer the weights to a
fully convolutional CNN to efficiently generate a probability map
across the image; we then use a fully connected CRF to predict the
material at every pixel.

ten smooth and featureless, requiring reasoning about subtle
cues or context to differentiate between them.

Large-scale datasets (e.g., ImageNet [21], SUN [31, 19]
and Places [34]) combined with convolutional neural net-
works (CNNs) have been key to recent breakthroughs in
object recognition and scene classification. Material recogni-
tion is similarly poised for advancement through large-scale
data and learning. To date, progress in material recognition
has been facilitated by moderate-sized datasets like the Flickr
Material Database (FMD) [26]. FMD contains ten material
categories, each with 100 samples drawn from Flickr photos.
These images were carefully selected to illustrate a wide
range of appearances for these categories. FMD has been
used in research on new features and learning methods for
material perception and recognition [17, 10, 20, 25]. While
FMD was an important step towards material recognition, it
is not sufficient for classifying materials in real-world im-
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agery. This is due to the relatively small set of categories,
the relatively small number of images per category, and also
because the dataset has been designed around hand-picked
iconic images of materials. The OpenSurfaces dataset [1]
addresses some of these problems by introducing 105,000
material segmentations from real-world images, and is sig-
nificantly larger than FMD. However, in OpenSurfaces many
material categories are under-sampled, with only tens of
images.

A major contribution of our paper is a new, well-sampled
material dataset, called the Materials in Context Database
(MINC), with 3 million material samples. MINC is more
diverse, has more examples in less common categories, and
is much larger than existing datasets. MINC draws data from
both Flickr images, which include many “regular” scenes,
as well as Houzz images from professional photographers of
staged interiors. These sources of images each have different
characteristics that together increase the range of materials
that can be recognized. See Figure 2 for examples of our
data. We make our full dataset available online at http:
//minc.cs.cornell.edu/.

We use this data for material recognition by training dif-
ferent CNN architectures on this new dataset. We perform
experiments that illustrate the effect of network architec-
ture, image context, and training data size on subregions
(i.e., patches) of a full scene image. Further, we build on
our patch classification results and demonstrate simultane-
ous material recognition and segmentation of an image by
performing dense classification over the image with a fully
connected conditional random field (CRF) model [12]. By
replacing the fully connected layers of the CNN with convo-
lutional layers [24], the computational burden is significantly
lower than a naive sliding window approach.

In summary, we make two new contributions:

• We introduce a new material dataset, MINC, and 3-
stage crowdsourcing pipeline for efficiently collecting
millions of click labels (Section 3.2).
• Our new semantic segmentation method combines a

fully-connected CRF with unary predictions based on
CNN learned features (Section 4.2) for simultaneous
material recognition and segmentation.

2. Prior Work
Material Databases. Much of the early work on material
recognition focused on classifying specific instances of tex-
tures or material samples. For instance, the CUReT [4]
database contains 61 material samples, each captured under
205 different lighting and viewing conditions. This led to
research on the task of instance-level texture or material clas-
sification [15, 30], and an appreciation of the challenges of
building features that are invariant to pose and illumination.
Later, databases with more diverse examples from each ma-

terial category began to appear, such as KTH-TIPS [9, 2],
and led explorations of how to generalize from one example
of a material to another—from one sample of wood to a com-
pletely different sample, for instance. Real-world texture
attributes have also recently been explored [3].

In the domain of categorical material databases, Sharan et
al. released FMD [26] (described above). Subsequently,
Bell et al. released OpenSurfaces [1] which contains over
20,000 real-world scenes labeled with both materials and ob-
jects, using a multi-stage crowdsourcing pipeline. Because
OpenSurfaces images are drawn from consumer photos on
Flickr, material samples have real-world context, in contrast
to prior databases (CUReT, KTH-TIPS, FMD) which fea-
ture cropped stand-alone samples. While OpenSurfaces is a
good starting point for a material database, we substantially
expand it with millions of new labels.

Material recognition. Much prior work on material recog-
nition has focused on the classification problem (categorizing
an image patch into a set of material categories), often using
hand-designed image features. For FMD, Liu et al. [17] in-
troduced reflectance-based edge features in conjunction with
other general image features. Hu et al. [10] proposed fea-
tures based on variances of oriented gradients. Qi et al. [20]
introduced a pairwise local binary pattern (LBP) feature.
Li et al. [16] synthesized a dataset based on KTH-TIPS2
and built a classifier from LBP and dense SIFT. Timofte et
al. [29] proposed a classification framework with minimal
parameter optimization. Schwartz and Nishino [23] intro-
duced material traits that incorporate learned convolutional
auto-encoder features. Recently, Cimpoi et al. [3] devel-
oped a CNN and improved Fisher vector (IFV) classifier that
achieves state-of-the-art results on FMD and KTH-TIPS2.
Finally, it has been shown that jointly predicting objects and
materials can improve performance [10, 33].

Convolutional neural networks. While CNNs have been
around for a few decades, with early successes such as
LeNet [14], they have only recently led to state-of-the-
art results in object classification and detection, leading
to enormous progress. Driven by the ILSVRC chal-
lenge [21], we have seen many successful CNN architec-
tures [32, 24, 28, 27], led by the work of Krizhevsky et al.
on their SuperVision (a.k.a. AlexNet) network [13], with
more recent architectures including GoogLeNet [28]. In ad-
dition to image classification, CNNs are the state-of-the-art
for detection and localization of objects, with recent work
including R-CNNs [7], Overfeat [24], and VGG [27]. Fi-
nally, relevant to our goal of per-pixel material segmentation,
Farabet et al. [6] use a multi-scale CNN to predict the class
at every pixel in a segmentation. Oquab et al. [18] employ a
sliding window approach to localize patch classification of
objects. We build on this body of work in deep learning to
solve our problem of material recognition and segmentation.
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Figure 2. Example patches from all 23 categories of the Materials in Context Database (MINC). Note that we sample patches so that the
patch center is the material in question (and not necessarily the entire patch). See Table 1 for the size of each category.

3. The Materials in Context Database (MINC)
We now describe the methodology that went into building

our new material database. Why a new database? We needed
a dataset with the following properties:

• Size: It should be sufficiently large that learning meth-
ods can generalize beyond the training set.

• Well-sampled: Rare categories should be represented
with a large number of examples.
• Diversity: Images should span a wide range of appear-

ances of each material in real-world settings.
• Number of categories: It should contain many differ-

ent materials found in the real world.

3.1. Sources of data

We decided to start with the public, crowdsourced
OpenSurfaces dataset [1] as the seed for MINC since it is
drawn from Flickr imagery of everyday, real-world scenes
with reasonable diversity. Furthermore, it has a large number
of categories and the most samples of all prior databases.

While OpenSurfaces data is a good start, it has a few lim-
itations. Many categories in OpenSurfaces are not well sam-
pled. While the largest category, wood, has nearly 20K sam-
ples, smaller categories, such as water, have only tens of ex-
amples. This imbalance is due to the way the OpenSurfaces
dataset was annotated; workers on Amazon Mechanical Turk
(AMT) were free to choose any material subregion to seg-
ment. Workers often gravitated towards certain common
types of materials or salient objects, rather than being en-
couraged to label a diverse set of materials. Further, the
images come from a single source (Flickr).

We decided to augment OpenSurfaces with substantially
more data, especially for underrepresented material cate-

gories, with the initial goal of gathering at least 10K samples
per material category. We decided to gather this data from
another source of imagery, professional photos on the inte-
rior design website Houzz (houzz.com). Our motivation for
using this different source of data was that, despite Houzz
photos being more “staged” (relative to Flickr photos), they
actually represent a larger variety of materials. For instance,
Houzz photos contain a wide range of types of polished
stone. With these sources of image data, we now describe
how we gather material annotations.

3.2. Segments, Clicks, and Patches

What specific kinds of material annotations make for a
good database? How should we collect these annotations?
The type of annotations to collect is guided in large part by
the tasks we wish to generate training data for. For some
tasks such as scene recognition, whole-image labels can
suffice [31, 34]. For object detection, labeled bounding
boxes as in PASCAL are often used [5]. For segmentation or
scene parsing tasks, per-pixel segmentations are required [22,
8]. Each style of annotation comes with a cost proportional
to its complexity. For materials, we decided to focus on two
problems, guided by prior work:

• Patch material classification. Given an image patch,
what kind of material is it at the center?
• Full scene material classification. Given a full im-

age, produce a full per-pixel segmentation and labeling.
Also known as semantic segmentation or scene parsing
(but in our case, focused on materials). Note that classi-
fication can be a component of segmentation, e.g., with
sliding window approaches.
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Figure 3. AMT pipeline schematic for collecting clicks. (a)
Workers filter by images that contain a certain material, (b) work-
ers click on materials, and (c) workers validate click locations by
re-labeling each point. Example responses are shown in orange.

Segments. OpenSurfaces contains material segmentations—
carefully drawn polygons that enclose same-material regions.
To form the basis of MINC, we selected OpenSurfaces seg-
ments with high confidence (inter-worker agreement) and
manually curated segments with low confidence, giving a
total of 72K shapes. To better balance the categories, we
manually segmented a few hundred extra samples for sky,
foliage and water.

Since some of the OpenSurfaces categories are difficult
for humans, we consolidated these categories. We found
that many AMT workers could not disambiguate stone from
concrete, clear plastic from opaque plastic, and granite
from marble. Therefore, we merged these into stone, plastic,
and polished stone respectively. Without this merging, many
ground truth examples in these categories would be incorrect.
The final list of 23 categories is shown in Table 1. The
category other is different in that it was created by combining
various smaller categories.

Clicks. Since we want to expand our dataset to millions
of samples, we decided to augment OpenSurfaces segments
by collecting clicks: single points in an image along with a
material label, which are much cheaper and faster to collect.
Figure 3 shows our pipeline for collecting clicks.

Initially, we tried asking workers to click on examples
of a given material in a photo. However, we found that
workers would get frustrated if the material was absent in
too many of the photos. Thus, we added an initial first
stage where workers filter out such photos. To increase
the accuracy of our labels, we verify the click labels by
asking different workers to specify the material for each
click without providing them with the label from the previous
stage.

To ensure that we obtain high quality annotations and
avoid collecting labels from workers who are not making an
effort, we include secret known answers (sentinels) in the
first and third stages, and block workers with an accuracy
below 50% and 85% respectively. We do not use sentinels
in the second stage since it would require per-pixel ground
truth labels, and it turned out not to be necessary. Workers
generally performed all three tasks so we could identify bad
workers in the first or third task.

Patches Category Patches Category Patches Category
564,891 Wood 114,085 Polished stone 35,246 Skin
465,076 Painted 98,891 Carpet 29,616 Stone
397,982 Fabric 83,644 Leather 28,108 Ceramic
216,368 Glass 75,084 Mirror 26,103 Hair
188,491 Metal 64,454 Brick 25,498 Food
147,346 Tile 55,364 Water 23,779 Paper
142,150 Sky 39,612 Other 14,954 Wallpaper
120,957 Foliage 38,975 Plastic

Table 1. MINC patch counts by category. Patches were created
from both OpenSurfaces segments and our newly collected clicks.
See Section 3.2 for details.

Material clicks were collected for both OpenSurfaces
images and the new Houzz images. This allowed us to use
labels from OpenSurfaces to generate the sentinel data; we
included 4 sentinels per task. With this streamlined pipeline
we collected 2,341,473 annotations at an average cost of
$0.00306 per annotation (stage 1: $0.02 / 40 images, stage
2: $0.10 / 50 images, 2, stage 3: $0.10 / 50 points).

Patches. Labeled segments and clicks form the core of
MINC. For training CNNs and other types of classifiers,
it is useful to have data in the form of fixed-sized patches.
We convert both forms of data into a unified dataset format:
square image patches. We use a patch center and patch scale
(a multiplier of the smaller image dimension) to define the
image subregion that makes a patch. For our patch classi-
fication experiments, we use 23.3% of the smaller image
dimension. Increasing the patch scale provides more context
but reduces the spatial resolution. Later in Section 5 we
justify our choice with experiments that vary the patch scale
for AlexNet.

We place a patch centered around each click label. For
each segment, if we were to place a patch at every interior
pixel then we would have a very large and redundant dataset.
Therefore, we Poisson-disk subsample each segment, sepa-
rating patch centers by at least 9.1% of the smaller image
dimension. These segments generated 655,201 patches (an
average of 9.05 patches per segment). In total, we gener-
ated 2,996,674 labeled patches from 436,749 images. Patch
counts are shown in Table 1, and example patches from
various categories are illustrated in Figure 2.

4. Material recognition in real-world images
Our goal is to train a system that recognizes the material

at every pixel in an image. We split our training procedure
into multiple stages and analyze the performance of the
network at each stage. First, we train a CNN that produces a
single prediction for a given input patch. Then, we convert
the CNN into a sliding window and predict materials on a
dense grid across the image. We do this at multiple scales
and average to obtain a unary term. Finally, a dense CRF
[12] combines the unary term with fully connected pairwise
reasoning to output per-pixel material predictions. The entire
system is depicted in Figure 1, and described more below.
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Figure 4. Pipeline for full scene material classification. An image (a) is resized to multiple scales [1/
√
2, 1,

√
2]. The same sliding CNN

predicts a probability map (b) across the image for each scale; the results are upsampled and averaged. A fully connected CRF predicts a
final label for each pixel (c). This example shows predictions from a single GoogLeNet converted into a sliding CNN (no average pooling).

4.1. Training procedure

MINC contains 3 million patches that we split into train-
ing, validation and test sets. Randomly splitting would result
in nearly identical patches (e.g., from the same OpenSur-
faces segment) being put in training and test, thus inflating
the test score. To prevent correlation, we group photos into
clusters of near-duplicates, then assign each cluster to one
of train, validate or test. We make sure that there are at least
75 segments of each category in the test set to ensure there
are enough segments to evaluate segmentation accuracy. To
detect near-duplicates, we compare AlexNet CNN features
computed from each photo (see the supplemental for details).
For exact duplicates, we discard all but one of the copies.

We train all of our CNNs by fine-tuning the network
starting from the weights obtained by training on 1.2 mil-
lion images from ImageNet (ILSVRC2012). When training
AlexNet, we use stochastic gradient descent with batchsize
128, dropout rate 0.5, momentum 0.9, and a base learning
rate of 10−3 that decreases by a factor of 0.25 every 50,000
iterations. For GoogLeNet, we use batchsize 69, dropout 0.4,
and learning rate αt = 10−4

√
1− t/250000 for iteration t.

Our training set has a different number of examples per
class, so we cycle through the classes and randomly sample
an example from each class. Failing to properly balance the
examples results in a 5.7% drop in mean class accuracy (on
the validation set). Further, since it has been shown to reduce
overfitting, we randomly augment samples by taking crops
(227× 227 out of 256× 256), horizontal mirror flips, spatial
scales in the range [1/

√
2,
√
2], aspect ratios from 3:4 to 4:3,

and amplitude shifts in [0.95, 1.05]. Since we are looking at
local regions, we subtract a per-channel mean (R: 124, G:
117, B: 104) rather than a mean image [13].

4.2. Full scene material classification

Figure 4 shows an overview of our method for simul-
taneously segmenting and recognizing materials. Given a
CNN that can classify individual points in the image, we
convert it to a sliding window detector and densely classify
a grid across the image. Specifically, we replace the last
fully connected layers with convolutional layers, so that the
network is fully convolutional and can classify images of

any shape. After conversion, the weights are fixed and not
fine-tuned. With our converted network, the strides of each
layer cause the network to output a prediction every 32 pix-
els. We obtain predictions every 16 pixels by shifting the
input image by half-strides (16 pixels). While this appears to
require 4x the computation, Sermanet et al. [24] showed that
the convolutions can be reused and only the pool5 through
fc8 layers need to be recomputed for the half-stride shifts.
Adding half-strides resulted in a minor 0.2% improvement
in mean class accuracy across segments (after applying the
dense CRF, described below), and about the same mean class
accuracy at click locations.

The input image is resized so that a patch maps to a
256x256 square. Thus, for a network trained at patch scale
s, the resized input has smaller dimension d = 256/s. Note
that d is inversely proportional to scale, so increased context
leads to lower spatial resolution. We then add padding so
that the output probability map is aligned with the input
when upsampled. We repeat this at 3 different scales (smaller
dimension d/

√
2, d, d

√
2), upsample each output probability

map with bilinear interpolation, and average the predictions.
To make the next step more efficient, we upsample the output
to a fixed smaller dimension of 550.

We then use the dense CRF of Krähenbühl et al. [12] to
predict a label at every pixel, using the following energy:

E(x | I) =
∑
i

ψi(xi) +
∑
i<j

ψij(xi, xj) (1)

ψi(xi) = − log pi(xi) (2)
ψij(xi, xj) = wp δ(xi 6= xj) k(fi − fj) (3)

where ψi is the unary energy (negative log of the aggre-
gated softmax probabilities) and ψij is the pairwise term
that connects every pair of pixels in the image. We use a
single pairwise term with a Potts label compatibility term
δ weighted by wp and unit Gaussian kernel k. For the fea-
tures fi, we convert the RGB image to L*a*b* and use color
(ILi , I

a
i , I

b
i ) and position (px, py) as pairwise features for

each pixel: fi =
[
pxi
θp d

,
pyi
θp d

,
ILi
θL
,
Iai
θab
,
Ibi
θab

]
, where d is the

smaller image dimension. Figure 4 shows an example unary
term pi and the resulting segmentation x.

5



Figure 5. Varying patch scale. We train/test patches of different
scales (the patch locations do not vary). The optimum is a trade-off
between context and spatial resolution. CNN: AlexNet.

Architecture Validation Test
AlexNet [13] 82.2% 81.4%
GoogLeNet [28] 85.9% 85.2%
VGG-16 [27] 85.6% 84.8%

Table 2. Patch material classification results. Mean class accu-
racy for different CNNs trained on MINC. See Section 5.1.

Sky 97.3% Food 90.4% Wallpaper 83.4% Glass 78.5%
Hair 95.3% Leather 88.2% Tile 82.7% Fabric 77.8%

Foliage 95.1% Other 87.9% Ceramic 82.7% Metal 77.7%
Skin 93.9% Pol. stone 85.8% Stone 82.7% Mirror 72.0%

Water 93.6% Brick 85.1% Paper 81.8% Plastic 70.9%
Carpet 91.6% Painted 84.2% Wood 81.3%

Table 3. Patch test accuracy by category. CNN: GoogLeNet. See
the supplemental material for a full confusion matrix.

5. Experiments and Results

5.1. Patch material classification

In this section, we evaluate the effect of many different
design decisions for training methods for material classifica-
tion and segmentation, including various CNN architectures,
patch sizes, and amounts of data.

CNN Architectures. Our ultimate goal is full material seg-
mentation, but we are also interested in exploring which
CNN architectures give the best results for classifying sin-
gle patches. Among the networks and parameter varia-
tions we tried we found the best performing networks were
AlexNet [13], VGG-16 [27] and GoogLeNet [28]. AlexNet
and GoogLeNet are re-implementations by BVLC [11], and
VGG-16 is configuration D (a 16 layer network) of [27].
All models were obtained from the Caffe Model Zoo [11].
Our experiments use AlexNet for evaluating material classi-
fication design decisions and combinations of AlexNet and
GoogLeNet for evaluating material segmentation. Tables 2
and 3 summarize patch material classification results on our
dataset. Figure 10 shows correct and incorrect predictions
made with high confidence.

Input patch scale. To classify a point in an image we must
decide how much context to include around it. The context,
expressed as a fraction of image size, is the patch scale. A
priori, it is not clear which scale is best since small patches
have better spatial resolution, but large patches have more
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Figure 6. Varying database size. Patch accuracy when trained on
random subsets of MINC. Equal size is using equal samples per
category (size determined by smallest category). CNN: AlexNet.

Peak accuracy
per category

Figure 7. Accuracy vs patch scale by category. Dots: peak accu-
racy for each category; colored lines: sky, wallpaper, mirror; gray
lines: other categories. CNN: AlexNet. While most materials are
optimally recognized at 23.3% or 32% patch scale, recognition of
sky, wallpaper and mirror improve with increasing context.

contextual information. Holding patch centers fixed we var-
ied scale and evaluated classification accuracy with AlexNet.
Results and a visualization of patch scales are shown in Fig-
ure 5. Scale 32% performs the best. Individual categories
had peaks at middle scale with some exceptions; we find
that mirror, wallpaper and sky improve with increasing con-
text (Figure 7). We used 23.3% (which has nearly the same
accuracy but higher spatial resolution) for our experiments.

Dataset size. To measure the effect of size on patch clas-
sification accuracy we trained AlexNet with patches from
randomly sampled subsets of all 369,104 training images
and tested on our full test set (Figure 6). As expected, using
more data improved performance. In addition, we still have
not saturated performance with 2.5 million training patches;
even higher accuracies may be possible with more training
data (though with diminishing returns).

Dataset balance. Although we’ve shown that more data is
better we also find that a balanced dataset is more effective.
We trained AlexNet with all patches of our smallest category
(wallpaper) and randomly sampled the larger categories
(the largest, wood, being 40x larger) to be equal size. We
then measured mean class accuracy on the same full test
set. As shown in Figure 6, “Equal size” is more accurate
than a dataset of the same size and just 1.7% lower than
the full training set (which is 9x larger). This result further
demonstrates the value of building up datasets in a balanced
manner, focusing on expanding the smallest, least common
categories.
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Figure 8. Full-scene material classification examples: high-accuracy test set predictions by our method. CNN: GoogLeNet (with the
average pooling layer removed). Right: legend for material colors. See Table 4 for quantitative evaluation.

Input image (a) Labels from CRF (b) Labels from CRF
(test set) trained on segments trained on clicks

Figure 9. Optimizing for click accuracy leads to sloppy bound-
aries. In (a), we optimize for mean class accuracy across segments,
resulting in high quality boundaries. In (b), we optimize for mean
class accuracy at click locations. Since the clicks are not neces-
sarily close to object boundaries, there is no penalty for sloppy
boundaries. CNN: GoogLeNet (without average pooling).

5.2. Full scene material segmentation

The full test set for our patch dataset contains 41,801
photos, but most of them contain only a few labels. Since
we want to evaluate the per-pixel classification performance,
we select a subset of 5,000 test photos such that each photo
contains a large number of segments and clicks, and small
categories are well sampled. We greedily solve for the best
such set of photos. We similarly select 2,500 of 25,844
validation photos. Our splits for all experiments are included
online with the dataset. To train the CRF for our model, we
try various parameter settings (θp, θab, θL, wp) and select the
model that performs best on the validation set. In total, we
evaluate 1799 combinations of CNNs and CRF parameters.
See the supplemental material for a detailed breakdown.

We evaluate multiple versions of GoogLeNet: both the
original architecture and a version with the average pooling
layer (at the end) changed to 5x5, 3x3, and 1x1 (i.e. no
average pooling). We evaluate AlexNet trained at multiple
patch scales (Figure 5). When using an AlexNet trained
at a different scale, we keep the same scale for testing. We
also experiment with ensembles of GoogLeNet and AlexNet,

Architecture (a) Segments only (b) Clicks only
Class Total Class Total

AlexNet Scale: 11.6% 64.3% 72.6% 79.9% 77.2%
AlexNet Scale: 23.3% 69.6% 76.6% 83.3% 81.1%
AlexNet Scale: 32.0% 70.1% 77.1% 83.2% 80.7%
AlexNet Scale: 46.5% 69.6% 75.4% 80.8% 77.7%
AlexNet Scale: 66.2% 67.7% 72.0% 77.2% 72.6%
GoogLeNet 7x7 avg. pool 64.4% 71.6% 63.6% 63.4%
GoogLeNet 5x5 avg. pool 67.6% 74.6% 70.9% 69.8%
GoogLeNet 3x3 avg. pool 70.4% 77.7% 76.1% 74.7%
GoogLeNet No avg. pool 70.4% 78.8% 79.1% 77.4%
Ensemble 2 CNNs 73.1% 79.8% 84.5% 83.1%
Ensemble 3 CNNs 73.1% 79.3% 85.9% 83.5%
Ensemble 4 CNNs 72.1% 78.4% 85.8% 83.2%
Ensemble 5 CNNs 71.7% 78.3% 85.5% 83.2%

Table 4. Full scene material classification results. Mean class
and total accuracy on the test set. When training, we optimize the
CRF parameters for mean class accuracy, but report both mean class
and total accuracy (mean accuracy across all examples). In one
experiment (a), we train and test only on segments; in a separate
experiment (b), we train and test only on clicks. Accuracies for
segments are averaged across all pixels that fall in that segment.

combined with either arithmetic or geometric mean.
Since we have two types of data, clicks and segments, we

run two sets of experiments: (a) we train and test only on
segments, and in a separate experiment (b) we train and test
only on clicks. These two training objectives result in very
different behavior, as illustrated in Figure 9. In experiment
(a), the accuracy across segments are optimized, producing
clean boundaries. In experiment (b), the CRF maximizes
accuracy only at click locations, thus resulting in sloppy
boundaries. As shown in Table 4, the numerical scores for
the two experiments are also very different: segments are
more challenging than clicks. While clicks are sufficient to
train a CNN, they are not sufficient to train a CRF.

Focusing on segmentation accuracy, we see from Ta-
ble 4(a) that our best single model is GoogLeNet without
average pooling (6% better than with pooling). The best
ensemble is 2 CNNs: GoogLeNet (no average pooling) and
AlexNet (patch scale: 46.5%), combined with arithmetic
mean. Larger ensembles perform worse since we are aver-
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Figure 10. High confidence predictions. Top two rows: correct
predictions. Bottom row: incorrect predictions (T: true, P: pre-
dicted). Percentages indicate confidence (the predictions shown are
at least this confident). CNN: GoogLeNet.

aging worse CNNs. In Figure 8, we show example labeling
results on test images.

5.3. Comparing MINC to FMD

Compared to FMD, the size and diversity of MINC is
valuable for classifying real-world imagery. Table 5 shows
the effect of training on all of FMD and testing on MINC
(and vice versa). The results suggests that training on FMD
alone is not sufficient for real-world classification. Though it
may seem that our dataset is “easy,” since the best classifica-
tions scores are lower for FMD than for MINC, we find that
difficulty is in fact closely tied to dataset size (Section 5.1).
Taking 100 random samples per category, AlexNet achieves
54.2 ± 0.7% on MINC (64.6 ± 1.3% when considering only
the 10 FMD categories) and 66.5% on FMD.

5.4. Comparing CNNs with prior methods

Cimpoi [3] is the best prior material classification method
on FMD. We find that by replacing DeCAF with oversam-
pled AlexNet features we can improve on their FMD results.
We then show that on MINC, a finetuned CNN is even better.

To improve on [3], we take their SIFT IFV, combine it
with AlexNet fc7 features, and add oversampling [13] (see
supplemental for details). With a linear SVM we achieve
69.6 ± 0.3% on FMD. Previous results are listed in Table 6.

Having found that SIFT IFV+fc7 is the new best on
FMD, we compare it to a finetuned CNN on a sub-
set of MINC (2500 patches per category, one patch per
photo). Fine-tuning AlexNet achieves 76.0 ± 0.2% whereas

Test
FMD MINC

Train FMD 66.5% 26.1%
MINC 41.7% 85.0%

(10 categories
in common)

Table 5. Cross-dataset experiments. We train on one dataset and
test on another dataset. Since MINC contains 23 categories, we
limit MINC to the 10 categories in common. CNN: AlexNet.

Method Accuracy Trials
Sharan et al. [25] 57.1 ± 0.6% 14 splits
Cimpoi et al. [3] 67.1 ± 0.4% 14 splits
Fine-tuned AlexNet 66.5 ± 1.5% 5 folds
SIFT IFV+fc7 69.6 ± 0.3% 10 splits

Table 6. FMD experiments. By replacing DeCAF features with
oversampled AlexNet features we improve on the best FMD result.

SIFT IFV+fc7 achieves 67.4 ± 0.5% with a linear SVM
(oversampling, 5 splits). This experiment shows that
a finetuned CNN is a better method for MINC than
SIFT IFV+fc7.

6. Conclusion
Material recognition is a long-standing, challenging prob-

lem. We introduce a new large, open, material database,
MINC, that includes a diverse range of materials of every-
day scenes and staged designed interiors, and is at least an
order of magnitude larger than prior databases. Using this
large database we conduct an evaluation of recent deep learn-
ing algorithms for simultaneous material classification and
segmentation, and achieve results that surpass prior attempts
at material recognition.

Some lessons we have learned are:

• Training on a dataset which includes the surrounding
context is crucial for real-world material classification.
• Labeled clicks are cheap and sufficient to train a CNN

alone. However, to obtain high quality segmentation
results, training a CRF on polygons results in much
better boundaries than training on clicks.

Many future avenues of work remain. Expanding the
dataset to a broader range of categories will require new
ways to mine images that have more variety, and new an-
notation tasks that are cost-effective. Inspired by attributes
for textures [3], in the future we would like to identify mate-
rial attributes and expand our database to include them. We
also believe that further exploration of joint material and ob-
ject classification and segmentation will be fruitful [10] and
lead to improvements in both tasks. Our database, trained
models, and all experimental results are available online at
http://minc.cs.cornell.edu/.
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